CHEM 116 – Honors and Majors General and Analytical Chemistry I 2 Exams, 6 Quizzes, 7 Labs, 9 Weeks HWK - 595 points (1245 in course)

| EII: | AVE = 108 (72%) | Range: 49 | ge: 49 - 148 Class Averages |    |                       | S |     |                     |
|------|-----------------|-----------|-----------------------------|----|-----------------------|---|-----|---------------------|
| EI:  | AVE = 87 (58%)  |           |                             |    | EXAM                  | 1 | 195 | 65%                 |
|      |                 |           |                             |    | QZ                    |   | 37  | 61%                 |
|      |                 |           |                             |    | LAB                   |   | 118 | 84%                 |
|      | Q1 6.0          | Q5 6.5    |                             |    | HWK                   |   | 73  | 77%                 |
|      | Q3 4.2          | Q6 6.1    |                             |    |                       |   |     |                     |
|      | Q4 7.8          | Q7 6.1    |                             |    | Course Grade Estimate |   |     |                     |
|      |                 |           |                             |    |                       | А | 75% |                     |
|      | E1 19           | E5 16     | L5                          | 18 |                       | В | 65% | class average 72.1% |
|      | E2 17           | E7 12***  |                             |    |                       | С | 50% | GPA 3.1             |
|      | L3 18           | SP 17     |                             |    |                       | D | 40% | 7+                  |

# Chemical Equilibrium

"When a system is in chemical equilibrium, a change in one of the parameters of the equilibrium produces a shift in such a direction that, were no other actors involved in this shift, it would lead to a change of opposite sign in the parameter involved."

Henri Louis Le Châtelier, 1888



- 6.5 Heterogeneous Equilibria
- 6.6 Applications of the Equilibrium Constant
- 6.7 Solving Equilibrium Problems

Please check your grades on Blackboard – today is drop date – talk with me FIRST!



#### **Arrows of Chemistry – Different Equilibrium Constants**

#### reaction

 $Ag^+(aq) + CI^-(aq) \rightarrow AgCI(s)$ 

resonance

 $O = S - O \leftrightarrow O - S = O$ 

equilibrium  $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ 

#### equilibrium constant, K

- K concentration ( $K_c$ ) Zumdahl/Harris
- $K_{\rm P}$  pressure
- $K_{\rm a}$  ionization of weak acid
  - $K_{\rm b}$  ionization of weak base
- $K_{sp}$  dissolution of slightly soluble salt

#### The Equilibrium Constant

#### Law of Mass Action

For  $aA + bB \ll cC + dD$  the equilibrium constant *K* is

$$K = \frac{\mathcal{A}^{c}_{C} \mathcal{A}^{d}_{D}}{\mathcal{A}^{a}_{A} \mathcal{A}^{b}_{B}}$$

where  $\mathcal{A}_{A}^{a}$  is the activity (Zumdahl p. 178, 194; Harris p. 164) of species A raised to its stoichiometric coefficient a. Expression for activity depends upon how composition is expressed.

molarity (*K*),  $\mathcal{A}_{A} = \gamma_{A}[A] / [ref]$  [ref] = 1 M  $\mathcal{A} = 1$  for pure liquids, solids pressure (*K*<sub>P</sub>),  $\mathcal{A}_{A} = \gamma_{A}P_{A} / P_{ref}$   $P_{ref} = 1$  atm (bar) Reference composition is usually 1, insures equilibrium constant is unitless

 $\gamma$  is the activity coefficient, where deviations from ideal gas or solution found

 $\gamma$  = 1 ideal gas, ideal solution (obeys Raoult's law)

#### **REVIEW FROM WEDNESDAY**

#### The Equilibrium Constant

**EX 1**. At 1000 K the equilibrium gas mixture contains 0.562 atm SO<sub>2</sub>, 0.101 atm O<sub>2</sub>, and 0.332 atm SO<sub>3</sub>. What is  $K_{\rm P}$ ?  $2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$ 0.562 0.101 0.332 EQ  $K_{\rm P} = \frac{\mathcal{A}^2_{\rm SO3}}{\mathcal{A}^2_{\rm SO3} \mathcal{A}_{\rm SO3}}$  $= \frac{P_{SO3}^2}{P_{SO2}^2 P_{O2}^2} = (0.332)^2 / (0.562)^2 (0.101) = 3.46$ 

#### **REVIEW FROM WEDNESDAY**

#### The Equilibrium Constant – K and K<sub>P</sub>

**EX 2.** At 250°C the equilibrium concentrations are  $[PCI_3] = [CI_2] = 0.280$  M and  $[PCI_5] = 1.885$  M for  $\begin{array}{rcl} \mathsf{PCI}_3(g) &+ & \mathsf{CI}_2(g) & \rightleftharpoons & \mathsf{PCI}_5(g) \\ 0.280 & & 0.280 & & 1.885 \end{array}$ EQ  $K = \frac{[PCI_5]}{[PCI_3][CI_2]} = (1.885) / (0.280)^2 = 24.0 \qquad PV = nRT \Rightarrow P = (n/V)RT = MRT$  $= \frac{P_{\text{PCI3}} / RT}{(P_{\text{PCI3}} / RT) (P_{\text{CI2}} / RT)} = K_{\text{P}} / RT = 24.0 / (0.082)(250+273) = 0.056$ where  $\Delta n = n_{\text{prod}} - n_{\text{react}}$  $K = K_{P} (RT)^{\Delta n}$ 

#### Heterogeneous Equilibria

**EX 4.** What is the value of *K* if an equilibrium mixture contains 1.0 mol Fe, I.0 × 10<sup>-3</sup> mol O<sub>2</sub>, and 2.0 mol Fe<sub>2</sub>O<sub>3</sub>(s) in a 2.0-L container'?  $4 \operatorname{Fe}(s) + 3 \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{Fe}_2 \operatorname{O}_3(s)$ EQ 1.0/2.0  $1.0 \times 10^{-3}/2.0$ 2.0/2.0  $K = 1 / [O_2]^3 = 1 / (0.50 \times 10^{-3})^3$ = 8.0 × 10<sup>9</sup>

#### Relationship of *K*'s of Related Equilibria

$$K_{\rm P} = 55.6 \text{ for} \qquad H_2(g) + I_2(g) \rightleftharpoons 2 \operatorname{HI}(g)$$

**EX 5.** For the above reaction  $(K_{\rm P} = P_{\rm HI}^2 / P_{\rm H2} P_{\rm H2})$  what is  $K_{\rm P}$  for: a)  $2 H_2(g) + 2 I_2(g) \rightleftharpoons 4 HI(g)$ multiply all coefficients by  $n \implies K_{new} = K_0^n$ b)  $2 \operatorname{HI}(g) \rightleftharpoons \operatorname{H}_2(g) + \operatorname{I}_2(g)$ reverse reaction (multiply by -1) =>  $K_{\text{new}} = K_0^{-1} = 1 / K_0$ c)  $\frac{1}{2} H_2(g) + \frac{1}{2} I_2(g) \rightleftharpoons HI(g)$ multiply all coefficients by  $n = \frac{1}{2} \implies K_{new} = K_0^{\frac{1}{2}} = \sqrt{K_0}$ 

#### Relationship of *K*'s of Simultaneous Equilibria

**EX 6.** Find the equilibrium constant for

$$SO_2(g) + CO_2(g) \rightleftharpoons SO_3(g) + CO(g)$$

if you know the equilibrium constants for the following reactions:

1) 
$$SO_2(g) + \frac{1}{2}O_2(g) \Rightarrow SO_3(g)$$
  
2)  $CO_2(g) \Rightarrow CO(g) + \frac{1}{2}O_2(g)$   
 $K_1 = P_{SO3} / P_{SO2} P_{O2}^{1/2} P_{CO2} K_2 = P_{CO} P_{O2}^{1/2} / P_{CO2}$ 

1) + 2):  $SO_2(g) + \frac{1}{2}O_2(g) + CO_2(g) \Rightarrow SO_3(g) + CO(g) + \frac{1}{2}O_2(g)$ 

 $K = (P_{SO3} / P_{SO2} P_{O2}^{1/2})(P_{CO} P_{O2}^{1/2} / P_{CO2}) = K_1 K_2$  add reactions, multiply K's

#### Relationship of K's of Simultaneous Equilibria

EX 6. Find the equilibrium constant for

$$PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$$

if you know the equilibrium constants for the following reactions:

1)  $PCI_5(s) \rightleftharpoons PCI_3(g) + CI_2(g)$ 2)  $PCI_5(s) \rightleftharpoons PCI_5(g)$   $K_1 = P_{PCI3} P_{CI2}$  $K_2 = P_{PCI5}$ 

1) - 2):  $PCI_5(s) + PCI_5(g) \Rightarrow PCI_3(g) + CI_2(g) + PCI_5(s)$ 

 $(P_{PCI3} P_{CI2}) / P_{PCI5} = K_1 / K_2$  subtract reactions, divide Ks

#### **Interpreting Value of the Equilibrium Constant**

$$H_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons H_2O(g) \qquad K = \frac{[H_2O]}{[H_2][O_2]^{\frac{1}{2}}} = 5.6 \times 10^{40}$$

 $Cl_2O(g) + H_2O(g) \rightleftharpoons 2 HOCI(g)$   $K_P = \frac{[HOCI]^2}{[Cl_2O][H_2O]} = 0.0900$ 

 $N_2(g) + O_2(g) \rightleftharpoons 2 NO_2(g)$   $K_P = \frac{[NO_2I]^2}{[N_2][O_2]} = 4.7 \times 10^{-31}$ 

K > 1 => product-favored; K >> 1 => reaction essentially complete K < 1 => reactant-favored; K << 1 => essentially no reaction

#### Product Quotient, Q (with initial concentrations, pressures)

| Three Approaches to Equilibri<br>2 Cu <sup>2+</sup> (aq) + Sn <sup>2+</sup> (aq) = | [Cu <sup>+</sup> ] <sup>2</sup> [Sn <sup>4+</sup> ]<br>[Cu <sup>2+</sup> ] <sup>2</sup> [Sn <sup>2+</sup> ] |                       |                      |                       |          |      |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|----------|------|
|                                                                                    | Cu <sup>2+</sup> (aq)                                                                                       | Sn <sup>2+</sup> (aq) | Cu <sup>+</sup> (aq) | Sn <sup>4+</sup> (aq) | Q        | K    |
| Experiment 1                                                                       |                                                                                                             |                       |                      |                       |          |      |
| Initial amounts, mol/L                                                             | 0.100                                                                                                       | 0.100                 | 0.000                | 0.000                 | 0        |      |
| Equilibrium amounts, mol/L                                                         | 0.0360                                                                                                      | 0.0680                | 0.0640               | 0.0320                |          | 1.49 |
| Experiment 2                                                                       |                                                                                                             |                       |                      |                       |          |      |
| Initial amounts, mol/L                                                             | 0.000                                                                                                       | 0.000                 | 0.100                | 0.100                 | $\infty$ |      |
| Equilibrium amounts, mol/L                                                         | 0.0567                                                                                                      | 0.0283                | 0.0433               | 0.0717                |          | 1.48 |
| Experiment 3                                                                       |                                                                                                             |                       |                      |                       |          |      |
| Initial amounts, mol/L                                                             | 0.100                                                                                                       | 0.100                 | 0.100                | 0.100                 | 1        |      |
| Equilibrium amounts, mol/L                                                         | 0.0922                                                                                                      | 0.0961                | 0.1078               | 0.1039                |          | 1.48 |



Find K given initial partial pressures and one equilibrium partial pressure.

EX 8. 4.00 atm of  $H_2(g)$  and 2.00 atm of  $I_2(g)$  are mixed and allowed to react. When equilibrium is reached 3.76 atm of HI(g) is formed. What is  $K_p$  for the reaction?

 $H_{2}(g) + I_{2}(g) \rightleftharpoons 2 \text{HI}(g)$   $I \quad 4.00 \text{ atm} \quad 2.00 \text{ atm} \quad 0$   $C \quad -x \quad -x \quad +2x$   $E \quad 4.00 - x \quad 2.00 - x \quad 3.76 \text{ atm} = 2x \implies x = 1.88$   $\mathcal{K}_{P} = \frac{P_{HI}^{2}}{P_{H2}P_{I2}} = \frac{(1.88)^{2}}{(4.00 - 1.88)(2.00 - 1.88)} = 55.6$ 

Given *K* and all equilibrium partial pressures but one, find missing pressure.

EX 9. At 425°C  $K_p = 55.6$  for the following reaction. If  $P_{H_2} = 2.12$  atm and  $P_{I_2}$ = 0.12 atm at 425°C what is the equilibrium partial pressure of HI?  $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$ 2.12 atm 0.12 atm EQ  $\mathbf{O}$  $K_{\rm P} = \frac{P_{\rm HI}^2}{P_{\rm H2}P_{\rm H2}} \implies P_{\rm HI} = \sqrt{(K_{\rm P}P_{\rm H2}P_{\rm H2})} = \sqrt{55.6(2.12)(0.12)}$ = 3.76 atm

Given  $K_{sp}$  for dissolution of a solid, find ion concentrations.

EX 11. What are the equilibrium concentration of the ions at 25°C if  $Ksp = 3.2 \times 10^{-25}$ ? AuCl<sub>3</sub>(s)  $\rightleftharpoons$  Au<sup>3+</sup>(aq) + 3 Cl<sup>-</sup>(aq) EQ + x + 3x

$$K_{sp} = x (3x)^3 = 27 x^4 \implies x = (K_{sp} / 27)^{1/4}$$
  
=  $[(3.2 \times 10^{-25}) / 27]^{1/4}$   
=  $3.3 \times 10^{-7} = [Au^{3+}]$   
 $9.9 \times 10^{-7} = [Cl^{-}]$ 

Given all initial concentrations and one equilibrium concentration, find others.

EX 12. The equilibrium concentration of gaseous chlorine is 0.030 M when 0.075 and 0.033 M hydrogen chloride and oxygen gas, respectively, are initially placed in a reaction vessel. How much hydrogen chloride and oxygen gas are left unreacted at equilibrium?

|                                                                                  | 4 HCI(g)           | + | O <sub>2</sub> ( <i>g</i> ) | $\rightleftharpoons$ | 2 Cl <sub>2</sub> (g) | + | 2 H <sub>2</sub> O( <i>g</i> ) |   |  |
|----------------------------------------------------------------------------------|--------------------|---|-----------------------------|----------------------|-----------------------|---|--------------------------------|---|--|
| 1                                                                                | 0.075 M            |   | 0.033 M                     |                      | 0                     |   | 0                              |   |  |
| С                                                                                | - 4x               |   | - X                         |                      | + 2 <i>x</i>          |   | + 2 <i>x</i>                   |   |  |
| E                                                                                | 0.075 - 4 <i>x</i> |   | 0.033 - <i>x</i>            |                      | 0.030 M               |   | 2 <i>x</i>                     | — |  |
| $2x = 0.030 \implies x = 0.015 \text{ M} = [\text{Cl}_2] = [\text{H}_2\text{O}]$ |                    |   |                             |                      |                       |   |                                |   |  |
| $[HCI] = 0.075 - 4(0.015) = 0.015 M \qquad [O2] = 0.033 - 0.015 = 0.018 M$       |                    |   |                             |                      |                       |   |                                |   |  |

Treating systems with a small equilibrium constant

EX 13. If 2.00 mol of HBr were placed in a 1.00 L vessel at 1495 K what would be the equilibrium concentration of all species if  $K = 2.86 \times 10^{-5}$ ?  $2 \text{HBr}(g) \rightleftharpoons H_2(g) +$  $Br_2(g)$ 2.00 M 0 () С - 2x + X+ XΕ 2.00 - 2xX X  $\frac{x^2}{(2.00-2x)^2} \Longrightarrow \sqrt{K} = x/(2.00-2x)$ ignore 2x since K small => x small (not ignored then x = 0.01058)  $x = 2\sqrt{K} = 2\sqrt{(2.86 \times 10^{-5})} = 0.01069$  $[HBr] = 2.00 - 2(0.01069) = 1.9786 \implies 1.98 M$  $[H_2] = [Br_2] = 0.01 M$ 

Systems requiring a quadratic equation

EX 14. At a particular temperature  $K = 9.1 \times 10^{-4}$ . Determine the concentration of all ions in a solution that is initially 2.0 M FeSCN<sup>2+</sup>.  $FeSCN^{2+}(aq) \Rightarrow Fe^{3+}(aq) + SCN^{-}(aq)$ EQ 2.00 - xX X  $K = \frac{x^2}{1-x^2}$  or  $x^2 + xK - 2K = 0$ for  $ax^2 + bx + c = 0$  $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{ac}$  $x = -9.1 \times 10^{-4} \pm \sqrt{[(9.1 \times 10^{-4})^2 - 4(2)(9.1 \times 10^{-4})]}$  $= 0.042 \text{ M} = [\text{Fe}^{3+}] = [\text{SCN}^{-}]$  [FeSCN<sup>2+</sup>] = 2.0 M - 0.043 M unphysical if x ignored in denominator then  $[Fe^{3+}] = 0.043$  M

#### Le Châtelier's Principle

"When a system is in chemical equilibrium, a change in one of the parameters of the equilibrium produces a shift in such a direction that, were no other actors involved in this shift, it would lead to a change of opposite sign in the parameter involved."

Henri Louis Le Châtelier, 1888

- I. change of **temperature** at constant pressure
- II. change of total pressure at constant temperature
  - a) add or remove gaseous reactant or product at constant volume
  - b) change volume of container
  - c) add inert gas (one not involved in the reaction) at constant volume

III. change of concentration/partial pressure at constant volume (same as II a)

#### Le Châtelier's Principle – Change P(TConstant)

1) Pressure induced phase transition

$$\begin{array}{rcl} \mathsf{H}_2\mathsf{O}(s) & \rightleftharpoons & \mathsf{H}_2\mathsf{O}(l) \\ d = 0.917 & d = 0.999 \end{array}$$

Density = m/V =>liquid water has a larger volume available to a given mass of molecules than ice does. Therefore, ice melts under pressure (remember that the phase diagram for water has a negative slope for the solid/liquid coexistence line).

