CHEM 116 - Honors and Majors General and Analytical Chemistry I

2 Exams, 6 Quizzes, 7 Labs, 9 Weeks HWK - 595 points (1245 in course)

EII: AVE = 108 (72\%)	Range: 49-148	Class Averages		
El: AVE = 87 (58\%)		EXAM	195	65\%
		QZ	37	61\%
		LAB	118	84\%
Q1 6.0	Q5 6.5	HWK	73	77\%
Q3 4.2	Q6 6.1			
Q4 7.8	Q7 6.1	Course	de Estim	ate
			75\%	
E1 19	E5 16 L5 18		65\%	class average 72.1\%
E2 17	E7 12***		50\%	GPA 3.1
L3 18	SP 17		40\%	7+

Chemical Equilibrium

"When a system is in chemical equilibrium, a change in one of the parameters of the equilibrium produces a shift in such a direction that, were no other actors involved in this shift, it would lead to a change of opposite sign in the parameter involved."

Henri Louis Le Châtelier, 1888

6.4, 6.9 The Concept of Activity and Equilibria Involving Real Gases (See Harris 8-2)

6.5 Heterogeneous Equilibria

6.6 Applications of the Equilibrium Constant
6.7 Solving Equilibrium Problems

Please check your grades on Blackboard - today is drop date talk with me FIRST!

Arrows of Chemistry - Different Equilibrium Constants

```
reaction
Ag+(aq) + Cl-(aq) }->\textrm{AgCl}(s
resonance
O=S-O}\leftrightarrow\textrm{O}-\textrm{S}=\textrm{O
equilibrium
N2O
```

equilibrium constant, K
K - concentration $\left(K_{c}\right)$ Zumdahl/Harris
K_{P} - pressure
K_{a} - ionization of weak acid
K_{b} - ionization of weak base
$K_{\text {sp }}$ - dissolution of slightly soluble salt

The Equilibrium Constant

Law of Mass Action

For $\mathrm{aA}+\mathrm{bB}<=>\mathrm{cC}+\mathrm{dD}$ the equilibrium constant K is

$$
K=\frac{\mathcal{A}_{\mathrm{C}}{ } \mathcal{A}_{\mathrm{D}}^{\mathrm{d}}}{\mathcal{A}^{\mathrm{A}} \mathcal{A}^{\mathrm{b}}}
$$

where $\mathcal{A}^{\mathrm{a}}{ }_{\mathrm{A}}$ is the activity (Zumdahl p. 178, 194; Harris p. 164) of species A raised to its stoichiometric coefficient a. Expression for activity depends upon how composition is expressed.

```
molarity \((K), \mathcal{A}_{\mathrm{A}}=\gamma_{\mathrm{A}}[\mathrm{A}] /[\mathrm{ref}] \quad[r e f]=1 \mathrm{M} \quad \mathcal{A}=1\) for pure liquids, solids
pressure \(\left(K_{P}\right), \mathcal{A}_{\mathrm{A}}=\gamma_{\mathrm{A}} P_{\mathrm{A}} / P_{\text {ref }}\)
\(P_{\text {ref }}=1 \mathrm{~atm}\) (bar)
```

Reference composition is usually 1 , insures equilibrium constant is unitless γ is the activity coefficient, where deviations from ideal gas or solution found $\gamma=1$ ideal gas, ideal solution (obeys Raoult's law)

The Equilibrium Constant

EX 1. At 1000 K the equilibrium gas mixture contains $0.562 \mathrm{~atm} \mathrm{SO}_{2}, 0.101$ atm O_{2}, and $0.332 \mathrm{~atm} \mathrm{SO}_{3}$. What is K_{p} ?

$$
\begin{aligned}
& 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \\
& \begin{array}{llll}
\text { EQ } & 0.562 & 0.101 & 0.332
\end{array} \\
& K_{P}=\frac{\mathcal{A}^{2}{ }_{\text {SO3 }}}{\mathcal{A}_{\text {SO2 }} \mathcal{A}_{\text {O2 }}} \\
& =\frac{P^{2}{ }_{\text {SO3 }}}{P^{2}{ }_{\mathrm{SO2}} P_{\mathrm{O} 2}}=(0.332)^{2} /(0.562)^{2}(0.101)=3.46
\end{aligned}
$$

The Equilibrium Constant - K and K_{P}

EX 2. At $250^{\circ} \mathrm{C}$ the equilibrium concentrations are $\left[\mathrm{PCl}_{3}\right]=\left[\mathrm{Cl}_{2}\right]=0.280 \mathrm{M}$ and $\left[\mathrm{PCl}_{5}\right]=1.885 \mathrm{M}$ for

$$
\begin{aligned}
& \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{PCl}_{5}(g) \\
& 0.280 \quad 0.280 \quad 1.885 \\
& K=\frac{\left[\mathrm{PCl}_{5}\right]}{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}=(1.885) /(0.280)^{2}=\mathbf{2 4 . 0} \quad P V=n R T \Rightarrow P=(n / M) R T=M R T \\
& =\frac{P_{\mathrm{PCl} 5} / R T}{\left(P_{\mathrm{PCI} 3} / R T\right)\left(P_{\mathrm{CI} 2} / R T\right)}=K_{\mathrm{P}} / R T=24.0 /(0.082)(250+273)=0.056
\end{aligned}
$$

$$
K=K_{\mathrm{P}}(R T)^{\Delta n} \quad \text { where } \Delta n=n_{\text {prod }}-n_{\text {react }}
$$

Heterogeneous Equilibria

EX 4. What is thc value of K if an equilibrium mixture contains $1.0 \mathrm{~mol} \mathrm{Fe}, \mathrm{I} .0$ $\times 10^{-3} \mathrm{~mol} \mathrm{O}_{2}$, and $2.0 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$ in a $2.0-\mathrm{L}$ container'?

EQ \begin{tabular}{c}
$4 \mathrm{Fe}(\mathrm{s})$

$1.0 / 2.0$

$+$

$3 \mathrm{O}_{2}(\mathrm{~g})$

$1.0 \times 10^{-3} / 2.0$
\end{tabular}$\stackrel{2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})}{2.0 / 2.0}$

$K=1 /\left[\mathrm{O}_{2}\right]^{3}=1 /\left(0.50 \times 10^{-3}\right)^{3}$
$=\mathbf{8 . 0 \times 1 0 ^ { \mathbf { 9 } }}$

Relationship of K 's of Related Equilibria

$$
K_{\mathrm{P}}=55.6 \text { for } \quad \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)
$$

EX 5. For the above reaction $\left(K_{\mathrm{P}}=P_{\mathrm{HI}}^{2} / P_{\mathrm{H} 2} P_{\mathrm{I} 2}\right)$ what is K_{P} for:
a) $2 \mathrm{H}_{2}(g)+2 \mathrm{I}_{2}(g) \rightleftharpoons 4 \mathrm{HI}(g)$
multiply all coefficients by $n=>K_{\text {new }}=K_{0}{ }^{n}$
b) $2 \mathrm{HI}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g)$
reverse reaction (multiply by -1) $\Rightarrow>K_{\text {new }}=K_{0}{ }^{-1}=1 / K_{o}$
c) $1 / 2 \mathrm{H}_{2}(g)+1 / 2 \mathrm{I}_{2}(g) \rightleftharpoons \mathrm{HI}(g)$
multiply all coefficients by $n=1 / 2 \Rightarrow K_{\text {new }}=K_{0}^{1 / 2}=\sqrt{ } K_{0}$

Relationship of K 's of Simultaneous Equilibria

EX 6. Find the equilibrium constant for

$$
\mathrm{SO}_{2}(g)+\mathrm{CO}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g)+\mathrm{CO}(g)
$$

if you know the equilibrium constants for the following reactions:

1) $\mathrm{SO}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g)$

$$
K_{1}=P_{\mathrm{SO} 3} / P_{\mathrm{SO} 2} P^{1 / 2} \mathrm{O} 2
$$

2) $\mathrm{CO}_{2}(g) \rightleftharpoons \mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g)$ $K_{2}=P_{\mathrm{CO}} P^{1 / 2}{ }_{\mathrm{O} 2} / P_{\mathrm{CO} 2}$
3) + 2): $\mathrm{SO}_{2}(g)+1 / 2 \mathrm{O}_{2}(g)+\mathrm{CO}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g)+\mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g)$ $K=\left(P_{\mathrm{SO} 3} / P_{\mathrm{SO} 2} P^{1 / 2} \mathrm{O} 2\right)\left(P_{\mathrm{CO}} P^{1 / 2} \mathrm{O} 2 / P_{\mathrm{CO} 2}\right)=K_{1} K_{2}$ add reactions, multiply $K^{\prime} \mathrm{s}$

Relationship of K 's of Simultaneous Equilibria

EX 6. Find the equilibrium constant for

$$
\mathrm{PCl}_{5}(g) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)
$$

if you know the equilibrium constants for the following reactions:

$$
\begin{array}{ll}
\text { 1) } \mathrm{PCl}_{5}(s) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) & K_{1}=P_{\mathrm{PCl3}} P_{\mathrm{Cl} 2} \\
\text { 2) } \mathrm{PCl}_{5}(s) \rightleftharpoons \mathrm{PCl}_{5}(g) & K_{2}=P_{\mathrm{PCl} 5}
\end{array}
$$

1) - 2): $\mathrm{PCl}_{5}(\mathrm{~s})+\mathrm{PCl}_{5}(g) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)+\mathrm{PCl}_{5}(\mathrm{~s})$

$$
\left(P_{\mathrm{PCl3}} P_{\mathrm{Cl} 2}\right) / P_{\mathrm{PC} 15}=K_{1} / K_{2} \text { subtract reactions, divide } K^{\prime} \mathrm{s}
$$

Interpreting Value of the Equilibrium Constant

$$
\begin{array}{ll}
\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(g) & K=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{H}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}}=5.6 \times 10^{40} \\
\mathrm{Cl}_{2} \mathrm{O}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 2 \mathrm{HOCl}(g) & K_{\mathrm{P}}=\frac{\left[\mathrm{HOCl}^{2}\right.}{\left[\mathrm{Cl}_{2} \mathrm{O}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}=0.0900 \\
\mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g) & K_{\mathrm{P}}=\frac{\left[\mathrm{NO}_{2} 1\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}=4.7 \times 10^{-31} \\
K>1 \Rightarrow>\text { product-favored; } \mathrm{K} \gg 1 \text { 1 } \gg \text { reaction essentially complete } \\
K<1=>\text { reactant-favored; } \mathrm{K} \ll 1 \text { e> essentially no reaction }
\end{array}
$$

Product Quotient, \boldsymbol{Q} (with initial concentrations, pressures)

Three Approaches to Equilibrium in the Reaction

$2 \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq})$					$\frac{\left[\mathrm{Cu}^{+}\right]^{2}\left[\mathrm{Sn}^{4+}\right]}{\left[\mathrm{Cu}^{2+}\right]^{2}\left[\mathrm{Sn}^{2+}\right]}$	
	$\mathrm{Cu}^{2+}(\mathrm{aq})$	$\mathrm{Sn}^{2+}(\mathrm{aq})$	$\mathrm{Cu}^{+}(\mathrm{aq})$	$\mathrm{Sn}^{4+}(\mathrm{aq})$	Q	K
Experiment 1						
Initial amounts, mol/L	0.100	0.100	0.000	0.000	0	
Equilibrium amounts, mol/L	0.0360	0.0680	0.0640	0.0320		1.49
Experiment 2						
Initial amounts, mol/L	0.000	0.000	0.100	0.100	∞	
Equilibrium amounts, mol/L	0.0567	0.0283	0.0433	0.0717		1.48
Experiment 3						
Initial amounts, mol/L	0.100	0.100	0.100	0.100	1	
Equilibrium amounts, mol/L	0.0922	0.0961	0.1078	0.1039		1.48

Product Quotient, Q

$$
2 \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq})
$$

Experiment 2
$t_{c}=$ time for equilitrium to be reached

$$
\frac{\left[\mathrm{Cu}^{+}\right]^{2}\left[\mathrm{Sn}^{4+}\right]}{\left[\mathrm{Cu}^{2+}\right]^{2}\left[\mathrm{Sn}^{2+}\right]}
$$

$\operatorname{Exp} \quad Q \quad K$

10
1.49
2∞
1.48

31 1.48

Solving Equilibrium Problems

Find K given initial partial pressures and one equilibrium partial pressure.
EX 8. 4.00 atm of $\mathrm{H}_{2}(\mathrm{~g})$ and 2.00 atm of $\mathrm{I}_{2}(\mathrm{~g})$ are mixed and allowed to react. When equilibrium is reached 3.76 atm of $\mathrm{HI}(\mathrm{g})$ is formed. What is $K p$ for the reaction?

	$\mathrm{H}_{2}(\mathrm{~g})$	+	$\mathrm{I}_{2}(\mathrm{~g})$	\rightleftharpoons	$2 \mathrm{HI}(\mathrm{g})$
1	4.00 atm		2.00 atm		0
C	- x		- x		$+2 x$
E	$4.00-x$		$2.00-x$		3.76 atm

$$
K_{\mathrm{P}}=\frac{P_{\mathrm{HI}}^{2}}{P_{\mathrm{H} 2} P_{\mathrm{l} 2}}=\frac{(1.88)^{2}}{(4.00-1.88)(2.00-1.88)}=55.6
$$

Solving Equilibrium Problems

Given K and all equilibrium partial pressures but one, find missing pressure.
EX 9. At $425^{\circ} \mathrm{C} \mathrm{Kp}=55.6$ for the following reaction. If $P_{\mathrm{H} 2}=2.12 \mathrm{~atm}$ and P_{12} $=0.12 \mathrm{~atm}$ at $425^{\circ} \mathrm{C}$ what is the equilibrium partial pressure of HI ?

$$
\begin{gathered}
\mathrm{H}_{2}(g) \quad+\underset{\mathrm{I}_{2}(g)}{2.12 \mathrm{~atm}} \quad \rightleftharpoons \begin{array}{c}
2 \mathrm{HI}(g) \\
0.12 \mathrm{~atm}
\end{array} \\
K_{\mathrm{P}}=\frac{P_{\mathrm{HI}}^{2}}{P_{\mathrm{H} 2} P_{\mathrm{I} 2}} \Rightarrow \quad P_{\mathrm{HI}}=\sqrt{ }\left(K_{\mathrm{P}} P_{\mathrm{H} 2} P_{\mathrm{I} 2}\right)=\sqrt{ } 55.6(2.12)(0.12) \\
=\mathbf{3 . 7 6} \mathbf{~ a t m}
\end{gathered}
$$

Solving Equilibrium Problems

Given K_{sp} for dissolution of a solid, find ion concentrations.
EX 11. What are the equilibrium concentration of the ions at $25^{\circ} \mathrm{C}$ if $\mathrm{Ksp}=$ 3.2×10^{-25} ?

EQ

$$
\begin{aligned}
& \mathrm{AuCl}_{3}(\mathrm{~s}) \rightleftharpoons \begin{array}{c}
\mathrm{Au}^{3+}(\mathrm{aq}) \\
+x
\end{array} \\
& \begin{aligned}
&++3 \mathrm{Cl}^{-}(\mathrm{aq}) \\
&+3 x
\end{aligned} \\
& \mathrm{~K}_{\mathrm{sp}}=x(3 x)^{3}=27 x^{4}=>x=\left(\mathrm{K}_{\mathrm{sp}} / 27\right)^{1 / 4} \\
&= {\left[\left(3.2 \times 10^{-25}\right) / 27\right]^{1 / 4} } \\
&= 3.3 \times 10^{-7}=\left[\mathrm{Au}^{3+}\right] \\
& 9.9 \times 10^{-7}=\left[\mathrm{Cl}^{-}\right]
\end{aligned}
$$

Solving Equilibrium Problems

Given all initial concentrations and one equilibrium concentration, find others.
EX 12. The equilibrium concentration of gaseous chlorine is 0.030 M when 0.075 and 0.033 M hydrogen chloride and oxygen gas, respectively, are initially placed in a reaction vessel. How much hydrogen chloride and oxygen gas are left unreacted at equilibrium?

	$4 \mathrm{HCl}(g)$	+	$\mathrm{O}_{2}(\mathrm{~g})$	\rightleftharpoons	$2 \mathrm{Cl}_{2}(\mathrm{~g})$	+	$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
1	0.075 M		0.033 M		0		0
C	- $4 x$		- x		$+2 x$		$+2 x$
E	0.075-4x		$0.033-x$		0.030 M		$2 x$
$2 x=0.030 \Rightarrow x=0.015 \mathrm{M}=\left[\mathrm{Cl}_{2}\right]=\left[\mathrm{H}_{2} \mathrm{O}\right]$							

Solving Equilibrium Problems

Treating systems with a small equilibrium constant
EX 13. If 2.00 mol of HBr were placed in a 1.00 L vessel at 1495 K what would be the equilibrium concentration of all species if $K=2.86 \times 10^{-5}$?

	$2 \mathrm{HBr}(\mathrm{g})$	$\mathrm{H}_{2}(\mathrm{~g})$	+	$\mathrm{Br}_{2}(\mathrm{~g})$
1	2.00 M	0		0
C	- $2 x$	$+x$		+ x
E	$2.00-2 x$	x		X

Solving Equilibrium Problems

Systems requiring a quadratic equation
EX 14. At a particular temperature $K=9.1 \times 10^{-4}$. Determine the concentration of all ions in a solution that is initially $2.0 \mathrm{M} \mathrm{FeSCN}^{2+}$.

$$
\begin{aligned}
& \mathrm{FeSCN}^{2+}(\mathrm{aq}) \rightleftharpoons \mathrm{Fe}^{3+}(\mathrm{aq}) \quad+\quad \mathrm{SCN}^{-}(\mathrm{aq}) \\
& \text { EQ } \\
& 2.00-x \\
& x \\
& x \\
& K=\frac{x^{2}}{2.00-x} \quad \text { or } \quad x^{2}+x K-2 K=0 \\
& x=-9.1 \times 10^{-4} \pm \sqrt{ }\left[\left(9.1 \times 10^{-4}\right)^{2}-4(2)\left(9.1 \times 10^{-4}\right)\right] \\
& \text { for } a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =0.042 \mathrm{M}=\left[\mathrm{Fe}^{3+}\right]=\left[\mathrm{SCN}^{-}\right] \quad\left[\mathrm{FeSCN}^{2+}\right]=2.0 \mathrm{M} \\
& \text { - 0.043 M unphysical }
\end{aligned}
$$

Le Châtelier's Principle

"When a system is in chemical equilibrium, a change in one of the parameters of the equilibrium produces a shift in such a direction that, were no other actors involved in this shift, it would lead to a change of opposite sign in the parameter involved."

Henri Louis Le Châtelier, 1888
I. change of temperature at constant pressure
II. change of total pressure at constant temperature
a) add or remove gaseous reactant or product at constant volume
b) change volume of container
c) add inert gas (one not involved in the reaction) at constant volume
III. change of concentration/partial pressure at constant volume (same as II a)

Le Châtelier's Principle - Change P (T Constant)

1) Pressure induced phase transition

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \\
d=0.917
\end{gathered} \rightleftharpoons \quad \begin{gathered}
\mathrm{H}_{2} \mathrm{O}(I) \\
d=0.999
\end{gathered}
$$

Density $=m / V=>$ liquid water has a larger volume available to a given mass of molecules than ice does. Therefore, ice melts under pressure (remember that the phase diagram for water has a negative slope for the solid/liquid coexistence line).

